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Strolling through the landscape

All trees considered are ℵ1-trees, satisfying extra normality conditions:

1 for any s 6= t in T of limit height (>0), pred(s) 6= pred(t).

2 ∀t ∈ T , succ(t) is uncountable,

3 ∀t ∈ T , immsucc(t) is in�nite,

I start by considering normal Souslin trees. The story here begins with D.
Kurepa.

Theorem

There exists a Souslin line i� there exists a Souslin tree.

I will outline some methods of constructing a Souslin line from a Souslin
tree.
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A new approach

I will outline a generic way of performing this construction.

Let's observe �rst that the Kunen construction associates to each node of
the tree 2 points (the endpoints of an interval) in the resulting line.

We
are already seeing use of the ambient space where we perform the
consturction: here we ignore branches, and make use of the ambient
space points! Let us see how to do it.
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Proposition

Every normal tree T gives rise to a (compact T1) ordered space L.
Moreover, there is an injective homomorphism from T into L.

Proof.

Let T be a normal tree.

Consider the �rst order language

L = {<} ∪ {ct : t ∈ T} ∪ {dt : t ∈ T}

where ct and dt are distinct constant symbols. Let Σ be the L-theory
expressing that for every model A = (L, <, at , bt)t∈T of Σ, the following
hold:

1 L is a linearly ordered set,

2 at < bt for t ∈ T ,

3 as < at and bt < bs for s < t in T ,

4 bt < as or bs < at for s, t ∈ (T}) incomparable.
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Proof continued.

If A = (L, <, c : c ∈ L) is a model of Σ, it is easy to see that there is an
order-preserving injection from T into L mapping t to at .

What remains to show then is that Σ has a model. Let ∆ be a �nite
subset of Σ, and let T0 be the �nite subset of T consisting of exactly
those points of T to which sentences in ∆ refer. It is very simple to do
the rest on �ngers, ensuring that conditions (1-4) above are met.
Therefore ∆ does indeed have a model. By the compactness theorem, Σ
has a model.

Starting with a Souslin tree, it is easy to extract a linearly ordered
space L from the model that is ccc and not separable, i.e. a Souslin
line. (Note: we need to make some minor additions to the theory).

Assume in the theory that L is order dense. The Dedekind
completion of L is then a continuum.
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Wallman's Representation Theorem

Stone's representation theorem

Duality between the category of Boolean algebras and the category of
Stone spaces.

A less familiar generalization of Stone's representation:

Wallman's represntation theorem

Duality between the category of distributive disjunctive bounded lattices
and the category of compact T1-spaces.
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De�nitions

A lattice is distributive if it models the sentences

a u (b t c) = (a u b) t (a u c),

a t (b u c) = (a t b) u (a t c).

A lattice is disjunctive if it models the sentence

∀a, b∃c[a � b → c 6= 0 ∧ c ≤ a ∧ c u b = 0].
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Each space X comes with a lattice K(X ), its family of closed sets,
with ∩ and ∪ as the operations. The lattice is distributive,
disjunctive, and bounded (with ∅ and X ).

On the other hand, for each distributive disjunctive lattice L, there is
a compact T1-space X with a base for its closed sets that is an
isomorphic image of L.

The space X is obtained in the usual way (Stone topology). Take the set
of ultra�lters wL of L with the topology generated by {A∗ : A ∈ L},
where A∗ is the set of ultra�lters on L that contain the element A of L.
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Repeating the procedure

So let us repeat the procedure! In the Kunen construction each point got
2 points assigned to it. We can either look at it as an assignment of 2
closed sets, or of 1 closed set (or a continuum).

Let T be a normal tree. Consider the �rst order language

L = {u,t, 0, 1} ∪ {ct : t ∈ T}

where ct 's are distinct constant symbols. Let Σ be the L-theory
expressing that for every model A = (L,u,t, 0, 1, at)t∈T of Σ, the
following hold:

1 L is a bounded (with 0 and 1), distributive, disjunctive lattice,

2 as ⊃ at for s < t in T ,

3 as u at = 0 for s ⊥ t in T .
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If A = (L,u,t, c : c ∈ L) is a model of Σ, then there is a compact T1

space X such that T admits an (order-reversing) embedding in the
hyperspace K(X ) of all closed subsets of X .

What remains then is to show that Σ has a model. Again, let ∆ be a
�nite subset of Σ, and let T0 be the �nite subset of T consisting of
exactly those points of T to which sentences in ∆ refer. Obviously, we
can continue, calculating on �ngers. As a consequence, conditions (1-3)
above are satis�ed, and so ∆ has a model. By the compactness theorem,
Σ has a model.
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Consequences

Embedding trees in hyperspaces

Every normal tree T gives rise to a (compact T1) ordered space X .
Moreover, T embeds into the hyperspace K(X ) of closed subsets of X .

Remarks

1 There are no existential sentences in the theory, apart from
disjunctiveness. Therefore in almost all situations, a substructure is
a submodel. Therefore we may �nd a lot of compact spaces
generated by a subbase for closed sets which is a tree under the
reverse inclusion order (pseudo non-Archimedean?).

2 In all cases, the lattices produced may have large cardinality (we
have no control on that). Fortunately, the Lowenheim-Skolem
theorem puts things in order. In particular, we may take an
elementary sublattice of L containing {at : t ∈ T}, and of cardinality
ℵ1. That is, whatever the weight (≥ ℵ1) of the space, we can obtain
a quotient of weight ℵ1 using the Lowenheim-Skolem theorem.
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3 We may assume that all elements of {at : t ∈ T} are connected, so
that T embeds in the hyperspace C (X ) of all subcontinua of X .

4 In general, one may add any �rst-order property of topological
spaces, expressed in terms of closed sets. One has to be careful:
Every �nite subset of the theory has to be satis�able. In addition, if
one puts introduces existential operators in sentences, one may lose
special properties of (sub)bases.

5 We don't necessarily obtain a non-metric compactum in this
procedure. Todorcevic showed that there is an Aronszajn tree in the
set K(2ω) of all closed sets in the Cantor set.

Summary of one approach: Start with a normal tree. Embed the tree in a
lattice, which is a base for closed sets of a compact space. Restrict to
constant elements, and close under the functions (cap,cup). Viola. The
tree itself is a subbase for closed sets of the obtained space.
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Examples

Natural examples of non-metric results include the Aronszajn compacta
of K. Kunen and J. Hart.

De�nition

An embedded Aronszajn compactum is a closed subspace X ⊆ [0, 1]ω1

with w(X ) = ℵ1 and χ(X ) = ℵ0 such that for some club C ⊆ ω1: for
each α ∈ C ,Lα := {x ∈ Xα : |(σω1α )−1{x}| > 1} is countable.

For each such X , de�ne T = T (X ) :=
⋃
{Lα : α ∈ C}, and let / denote

the following order: if α, β ∈ C , α < β, x ∈ Lα and y ∈ Lβ then x / y i�
x = πβα(y). (T , /) is then an ℵ1-tree.

De�nition

An Aronszajn compactum is a compact space X such that w(X ) = ℵ1
and χ(X ) = ℵ0 and for some Z ⊂ [0, 1]ω1 homeomorphic to X , Z is an
embedded Aronszajn compactum.
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Kunen, Hart

Assume ♦. For each of the following 2x3 = 6 possibilities, there is an
HS, HL, Aronszajn compactum X with tree T = T (X ).
Possibilities for T :

a. T is Suslin.

b. T is special.

Possibilities for X :

α. dim(X ) = 0.

β. dim(X ) = 1 and X is connected and locally connected.

γ. dim(X ) =∞ and X is connected and locally connected.
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Another construction that has recently appeared:

Daniel et al.

There is a hereditarily indecomposable Aronszajn compactum X such
that each subcontinuum of X is a Gδ.

Typical examples in the literature include building in�nite-dimensional
spaces using the Hilbert cube and spectral constructions (van Mill).
Others involve the Menger Sponge to construct 1-dimensional spaces
(Kunen).

We use the pseudo-arc as a model space and build several hereditarily
indecomposable continua.
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Proposition

Assume ♦. There is a hereditarily indecomposable Aronszajn continuum
X such that X is HL.

Proposition

There is a hereditarily indecomposable continuum X such that X is �rst
countable and non-separable.

We don't know yet if there is a an L-space which is hereditarily
indecomposable.
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Hyperspaces

The hyperspace K(X ) (also denoted 2X ) consists of all closed subsets of
X equipped with the Vietoris topology. This topology is generated by two
kinds of subbasic open sets, where U is an arbitrary open set in X :

< U >= {F ∈ 2X : F ⊆ U}

and
> U <= {F ∈ 2X : F ∩ U 6= ∅}.

The hyperspace C (X ) is the subspace of K(X ) consisting of all
subcontinua of X .

K(.) and C (.) are endofunctors of the category of topological spaces.
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Applications

Let X be a compactum. K(X ) and C (X ), apart from being topological
spaces, are partially ordered sets. We always �x the order ≤X to be
reverse inclusion.

What can the order structure of those hyperspaces tell us about the
topology?

An immediate result, based on the Wallman representation theorem and
a work of Wolk: for a compactum X , the structure of K(X ), considered
as a partially ordered set, determines X up to homeomorphism.

What about C (X )?
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A compactum X is hereditarily indecomposable if for every two
intersecting subcontinua of X one is contained in the other. This means
that (C (X ),≤X ) is a pseudo-tree!

Nikiel

If X and Y are metrizable hereditarily indecomposable continua, then
(C (X ),≤X ) and (C (Y ),≤Y ) are isomorphic.

Illanes

Hereditarily indecomposable continua X have unique hyperspaces exp(X )
and C (X ).

Thus for a compactum X , exp(X ) encodes much more information about
the topology of X than C (X ).
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