Generating compact spaces from trees

Ahmad Farhat

University of Wrocław

January 31, 2013

2 Generating compact spaces

All trees considered are \aleph_1 -trees, satisfying extra normality conditions:

- **3** for any $s \neq t$ in T of limit height (>0), $pred(s) \neq pred(t)$.
- $\forall t \in T, succ(t) \text{ is uncountable},$
- $\forall t \in T, immsucc(t)$ is infinite,

l start by considering normal Souslin trees. The story here begins with D. Kurepa.

All trees considered are \aleph_1 -trees, satisfying extra normality conditions:

- **3** for any $s \neq t$ in T of limit height (>0), $pred(s) \neq pred(t)$.
- $\forall t \in T, succ(t) \text{ is uncountable},$
- $\forall t \in T, immsucc(t)$ is infinite,

l start by considering normal Souslin trees. The story here begins with D. Kurepa.

Theorem

There exists a Souslin line iff there exists a Souslin tree.

All trees considered are \aleph_1 -trees, satisfying extra normality conditions:

- **()** for any $s \neq t$ in T of limit height (>0), $pred(s) \neq pred(t)$.
- $\forall t \in T, succ(t) \text{ is uncountable},$
- $\forall t \in T, immsucc(t)$ is infinite,

l start by considering normal Souslin trees. The story here begins with D. Kurepa.

Theorem

There exists a Souslin line iff there exists a Souslin tree.

I will outline some methods of constructing a Souslin line from a Souslin tree.

All trees considered are \aleph_1 -trees, satisfying extra normality conditions:

- **3** for any $s \neq t$ in T of limit height (>0), $pred(s) \neq pred(t)$.
- $\forall t \in T, succ(t) \text{ is uncountable},$
- $\forall t \in T, immsucc(t)$ is infinite,

l start by considering normal Souslin trees. The story here begins with D. Kurepa.

Theorem

There exists a Souslin line iff there exists a Souslin tree.

I will outline some methods of constructing a Souslin line from a Souslin tree.

A new approach

I will outline a generic way of performing this construction.

Let's observe first that the Kunen construction associates to each node of the tree 2 points (the endpoints of an interval) in the resulting line.

A new approach

I will outline a generic way of performing this construction.

Let's observe first that the Kunen construction associates to each node of the tree 2 points (the endpoints of an interval) in the resulting line. We are already seeing use of the ambient space where we perform the construction: here we ignore branches, and make use of the ambient space points! Let us see how to do it. I will outline a generic way of performing this construction.

Let's observe first that the Kunen construction associates to each node of the tree 2 points (the endpoints of an interval) in the resulting line. We are already seeing use of the ambient space where we perform the construction: here we ignore branches, and make use of the ambient space points! Let us see how to do it.

Proposition

Every normal tree T gives rise to a (compact T_1) ordered space L. Moreover, there is an injective homomorphism from T into L.

Proof.

Let T be a normal tree.

Proposition

Every normal tree T gives rise to a (compact T_1) ordered space L. Moreover, there is an injective homomorphism from T into L.

Proof.

Let T be a normal tree. Consider the first order language

$$\mathcal{L} = \{<\} \cup \{c_t : t \in T\} \cup \{d_t : t \in T\}$$

where c_t and d_t are distinct constant symbols.

Proposition

Every normal tree T gives rise to a (compact T_1) ordered space L. Moreover, there is an injective homomorphism from T into L.

Proof.

Let \mathcal{T} be a normal tree Consider the first order language

$$\mathcal{L} = \{<\} \cup \{c_t : t \in T\} \cup \{d_t : t \in T\}$$

where c_t and d_t are distinct constant symbols. Let Σ be the \mathcal{L} -theory expressing that for every model $\mathcal{A} = (L, <, a_t, b_t)_{t \in T}$ of Σ , the following hold:

- L is a linearly ordered set,
- $a_t < b_t \text{ for } t \in T,$

④
$$a_s < a_t$$
 and $b_t < b_s$ for $s < t$ in T ,

• $b_t < a_s$ or $b_s < a_t$ for $s, t \in (T\})$ incomparable.

Proposition

Every normal tree T gives rise to a (compact T_1) ordered space L. Moreover, there is an injective homomorphism from T into L.

Proof.

Let T be a normal tree Consider the first order language

$$\mathcal{L} = \{<\} \cup \{c_t : t \in T\} \cup \{d_t : t \in T\}$$

where c_t and d_t are distinct constant symbols. Let Σ be the \mathcal{L} -theory expressing that for every model $\mathcal{A} = (L, <, a_t, b_t)_{t \in T}$ of Σ , the following hold:

- L is a linearly ordered set,
- $a_t < b_t \text{ for } t \in T,$

$${f O}$$
 $a_s < a_t$ and $b_t < b_s$ for $s < t$ in ${\cal T}$,

• $b_t < a_s$ or $b_s < a_t$ for $s, t \in (T)$ incomparable.

If $\mathcal{A} = (L, <, c : c \in \mathcal{L})$ is a model of Σ , it is easy to see that there is an order-preserving injection from T into L mapping t to a_t .

What remains to show then is that Σ has a model. Let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. It is very simple to do the rest on fingers, ensuring that conditions (1-4) above are met. Therefore Δ does indeed have a model. By the compactness theorem, Σ has a model.

If $\mathcal{A} = (L, <, c : c \in \mathcal{L})$ is a model of Σ , it is easy to see that there is an order-preserving injection from T into L mapping t to a_t .

What remains to show then is that Σ has a model. Let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. It is very simple to do the rest on fingers, ensuring that conditions (1-4) above are met. Therefore Δ does indeed have a model. By the compactness theorem, Σ has a model.

• Starting with a Souslin tree, it is easy to extract a linearly ordered space *L* from the model that is ccc and not separable, i.e. a Souslin line. (Note: we need to make some minor additions to the theory).

If $\mathcal{A} = (L, <, c : c \in \mathcal{L})$ is a model of Σ , it is easy to see that there is an order-preserving injection from T into L mapping t to a_t .

What remains to show then is that Σ has a model. Let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. It is very simple to do the rest on fingers, ensuring that conditions (1-4) above are met. Therefore Δ does indeed have a model. By the compactness theorem, Σ has a model.

- Starting with a Souslin tree, it is easy to extract a linearly ordered space *L* from the model that is ccc and not separable, i.e. a Souslin line. (Note: we need to make some minor additions to the theory).
- Assume in the theory that *L* is order dense. The Dedekind completion of *L* is then a continuum.

If $\mathcal{A} = (L, <, c : c \in \mathcal{L})$ is a model of Σ , it is easy to see that there is an order-preserving injection from T into L mapping t to a_t .

What remains to show then is that Σ has a model. Let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. It is very simple to do the rest on fingers, ensuring that conditions (1-4) above are met. Therefore Δ does indeed have a model. By the compactness theorem, Σ has a model.

- Starting with a Souslin tree, it is easy to extract a linearly ordered space *L* from the model that is ccc and not separable, i.e. a Souslin line. (Note: we need to make some minor additions to the theory).
- Assume in the theory that *L* is order dense. The Dedekind completion of *L* is then a continuum.

2 Generating compact spaces

Wallman's Representation Theorem

Stone's representation theorem

Duality between the category of Boolean algebras and the category of Stone spaces.

A less familiar generalization of Stone's representation:

Wallman's Representation Theorem

Stone's representation theorem

Duality between the category of Boolean algebras and the category of Stone spaces.

A less familiar generalization of Stone's representation:

Wallman's represntation theorem

Duality between the category of distributive disjunctive bounded lattices and the category of compact T_1 -spaces.

Wallman's Representation Theorem

Stone's representation theorem

Duality between the category of Boolean algebras and the category of Stone spaces.

A less familiar generalization of Stone's representation:

Wallman's representation theorem

Duality between the category of distributive disjunctive bounded lattices and the category of compact T_1 -spaces.

Definitions

A lattice is distributive if it models the sentences

$$a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c),$$

$$a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c).$$

A lattice is *disjunctive* if it models the sentence

$$\forall a, b \exists c [a \nleq b \rightarrow c \neq 0 \land c \leq a \land c \sqcap b = 0].$$

- Each space X comes with a lattice K(X), its family of closed sets, with ∩ and ∪ as the operations. The lattice is distributive, disjunctive, and bounded (with Ø and X).
- On the other hand, for each distributive disjunctive lattice L, there is a compact T₁-space X with a base for its closed sets that is an isomorphic image of L.

- Each space X comes with a lattice K(X), its family of closed sets, with ∩ and ∪ as the operations. The lattice is distributive, disjunctive, and bounded (with Ø and X).
- On the other hand, for each distributive disjunctive lattice *L*, there is a compact *T*₁-space *X* with a base for its closed sets that is an isomorphic image of *L*.

The space X is obtained in the usual way (Stone topology). Take the set of ultrafilters wL of L with the topology generated by $\{A^* : A \in L\}$, where A^* is the set of ultrafilters on L that contain the element A of L.

- Each space X comes with a lattice K(X), its family of closed sets, with ∩ and ∪ as the operations. The lattice is distributive, disjunctive, and bounded (with Ø and X).
- On the other hand, for each distributive disjunctive lattice *L*, there is a compact *T*₁-space *X* with a base for its closed sets that is an isomorphic image of *L*.

The space X is obtained in the usual way (Stone topology). Take the set of ultrafilters wL of L with the topology generated by $\{A* : A \in L\}$, where A* is the set of ultrafilters on L that contain the element A of L.

So let us repeat the procedure! In the Kunen construction each point got 2 points assigned to it. We can either look at it as an assignment of 2 closed sets, or of 1 closed set (or a continuum).

So let us repeat the procedure! In the Kunen construction each point got 2 points assigned to it. We can either look at it as an assignment of 2 closed sets, or of 1 closed set (or a continuum).

Let T be a normal tree.

So let us repeat the procedure! In the Kunen construction each point got 2 points assigned to it. We can either look at it as an assignment of 2 closed sets, or of 1 closed set (or a continuum).

Let T be a normal tree. Consider the first order language

 $\mathcal{L} = \{ \sqcap, \sqcup, 0, 1 \} \cup \{ c_t : t \in T \}$

where c_t 's are distinct constant symbols.

So let us repeat the procedure! In the Kunen construction each point got 2 points assigned to it. We can either look at it as an assignment of 2 closed sets, or of 1 closed set (or a continuum).

Let T be a normal tree. Consider the first order language

 $\mathcal{L} = \{\sqcap, \sqcup, 0, 1\} \cup \{c_t : t \in T\}$

where c_t 's are distinct constant symbols. Let Σ be the \mathcal{L} -theory expressing that for every model $\mathcal{A} = (L, \Box, \sqcup, 0, 1, a_t)_{t \in T}$ of Σ , the following hold:

- I is a bounded (with 0 and 1), distributive, disjunctive lattice,
- $a_s \supset a_t \text{ for } s < t \text{ in } T,$
- $a_s \sqcap a_t = 0 \text{ for } s \perp t \text{ in } T.$

So let us repeat the procedure! In the Kunen construction each point got 2 points assigned to it. We can either look at it as an assignment of 2 closed sets, or of 1 closed set (or a continuum).

Let T be a normal tree. Consider the first order language

$$\mathcal{L} = \{\sqcap, \sqcup, 0, 1\} \cup \{c_t : t \in T\}$$

where c_t 's are distinct constant symbols. Let Σ be the \mathcal{L} -theory expressing that for every model $\mathcal{A} = (L, \Box, \sqcup, 0, 1, a_t)_{t \in T}$ of Σ , the following hold:

L is a bounded (with 0 and 1), distributive, disjunctive lattice,

$$a_s \supset a_t \text{ for } s < t \text{ in } T,$$

$$a_s \sqcap a_t = 0 \text{ for } s \perp t \text{ in } T.$$

If $\mathcal{A} = (L, \Box, \sqcup, c : c \in \mathcal{L})$ is a model of Σ , then there is a compact T_1 space X such that T admits an (order-reversing) embedding in the hyperspace $\mathcal{K}(X)$ of all closed subsets of X.

What remains then is to show that Σ has a model. Again, let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. Obviously, we can continue, calculating on fingers. As a consequence, conditions (1-3) above are satisfied, and so Δ has a model. By the compactness theorem, Σ has a model.

If $\mathcal{A} = (\mathcal{L}, \Box, \sqcup, c : c \in \mathcal{L})$ is a model of Σ , then there is a compact T_1 space X such that T admits an (order-reversing) embedding in the hyperspace $\mathcal{K}(X)$ of all closed subsets of X.

What remains then is to show that Σ has a model. Again, let Δ be a finite subset of Σ , and let T_0 be the finite subset of T consisting of exactly those points of T to which sentences in Δ refer. Obviously, we can continue, calculating on fingers. As a consequence, conditions (1-3) above are satisfied, and so Δ has a model. By the compactness theorem, Σ has a model.

Consequences

Embedding trees in hyperspaces

Every normal tree T gives rise to a (compact T_1) ordered space X. Moreover, T embeds into the hyperspace $\mathcal{K}(X)$ of closed subsets of X.

Remarks

1 There are no existential sentences in the theory, apart from disjunctiveness. Therefore in almost all situations, a substructure is a submodel. Therefore we may find a lot of compact spaces generated by a subbase for closed sets which is a tree under the reverse inclusion order (pseudo non-Archimedean?).

Consequences

Embedding trees in hyperspaces

Every normal tree T gives rise to a (compact T_1) ordered space X. Moreover, T embeds into the hyperspace $\mathcal{K}(X)$ of closed subsets of X.

Remarks

- 1 There are no existential sentences in the theory, apart from disjunctiveness. Therefore in almost all situations, a substructure is a submodel. Therefore we may find a lot of compact spaces generated by a subbase for closed sets which is a tree under the reverse inclusion order (pseudo non-Archimedean?).
- 2 In all cases, the lattices produced may have large cardinality (we have no control on that). Fortunately, the Lowenheim-Skolem theorem puts things in order. In particular, we may take an elementary sublattice of *L* containing $\{a_t : t \in T\}$, and of cardinality \aleph_1 . That is, whatever the weight $(\geq \aleph_1)$ of the space, we can obtain a quotient of weight \aleph_1 using the Lowenheim-Skolem theorem.

Consequences

Embedding trees in hyperspaces

Every normal tree T gives rise to a (compact T_1) ordered space X. Moreover, T embeds into the hyperspace $\mathcal{K}(X)$ of closed subsets of X.

Remarks

- 1 There are no existential sentences in the theory, apart from disjunctiveness. Therefore in almost all situations, a substructure is a submodel. Therefore we may find a lot of compact spaces generated by a subbase for closed sets which is a tree under the reverse inclusion order (pseudo non-Archimedean?).
- 2 In all cases, the lattices produced may have large cardinality (we have no control on that). Fortunately, the Lowenheim-Skolem theorem puts things in order. In particular, we may take an elementary sublattice of L containing $\{a_t: t \in T\}$, and of cardinality \aleph_1 . That is, whatever the weight $(\geq \aleph_1)$ of the space, we can obtain a quotient of weight \aleph_1 using the Lowenheim-Skolem theorem.

- 3 We may assume that all elements of $\{a_t : t \in T\}$ are connected, so that T embeds in the hyperspace C(X) of all subcontinua of X.
- 4 In general, one may add any first-order property of topological spaces, expressed in terms of closed sets. One has to be careful: Every finite subset of the theory has to be satisfiable. In addition, if one puts introduces existential operators in sentences, one may lose special properties of (sub)bases.

- 3 We may assume that all elements of $\{a_t : t \in T\}$ are connected, so that T embeds in the hyperspace C(X) of all subcontinua of X.
- 4 In general, one may add any first-order property of topological spaces, expressed in terms of closed sets. One has to be careful: Every finite subset of the theory has to be satisfiable. In addition, if one puts introduces existential operators in sentences, one may lose special properties of (sub)bases.
- 5 We don't necessarily obtain a non-metric compactum in this procedure. Todorcevic showed that there is an Aronszajn tree in the set $\mathcal{K}(2^{\omega})$ of all closed sets in the Cantor set.

- 3 We may assume that all elements of $\{a_t : t \in T\}$ are connected, so that T embeds in the hyperspace C(X) of all subcontinua of X.
- 4 In general, one may add any first-order property of topological spaces, expressed in terms of closed sets. One has to be careful: Every finite subset of the theory has to be satisfiable. In addition, if one puts introduces existential operators in sentences, one may lose special properties of (sub)bases.
- 5 We don't necessarily obtain a non-metric compactum in this procedure. Todorcevic showed that there is an Aronszajn tree in the set $\mathcal{K}(2^{\omega})$ of all closed sets in the Cantor set.

Summary of one approach: Start with a normal tree. Embed the tree in a lattice, which is a base for closed sets of a compact space. Restrict to constant elements, and close under the functions (cap,cup). Viola. The tree itself is a subbase for closed sets of the obtained space.

- 3 We may assume that all elements of $\{a_t : t \in T\}$ are connected, so that T embeds in the hyperspace C(X) of all subcontinua of X.
- 4 In general, one may add any first-order property of topological spaces, expressed in terms of closed sets. One has to be careful: Every finite subset of the theory has to be satisfiable. In addition, if one puts introduces existential operators in sentences, one may lose special properties of (sub)bases.
- 5 We don't necessarily obtain a non-metric compactum in this procedure. Todorcevic showed that there is an Aronszajn tree in the set $\mathcal{K}(2^{\omega})$ of all closed sets in the Cantor set.

Summary of one approach: Start with a normal tree. Embed the tree in a lattice, which is a base for closed sets of a compact space. Restrict to constant elements, and close under the functions (cap,cup). Viola. The tree itself is a subbase for closed sets of the obtained space.

2 Generating compact spaces

Natural examples of non-metric results include the Aronszajn compacta of K. Kunen and J. Hart.

Definition

An embedded Aronszajn compactum is a closed subspace $X \subseteq [0,1]^{\omega_1}$ with $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ such that for some club $C \subseteq \omega_1$: for each $\alpha \in C, \mathcal{L}_\alpha := \{x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1\}$ is countable.

Natural examples of non-metric results include the Aronszajn compacta of K. Kunen and J. Hart.

Definition

An embedded Aronszajn compactum is a closed subspace $X \subseteq [0,1]^{\omega_1}$ with $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ such that for some club $C \subseteq \omega_1$: for each $\alpha \in C, \mathcal{L}_\alpha := \{x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1\}$ is countable.

For each such X, define $T = T(X) := \bigcup \{L_{\alpha} : \alpha \in C\}$, and let \triangleleft denote the following order: if $\alpha, \beta \in C, \alpha < \beta, x \in \mathcal{L}_{\alpha}$ and $y \in \mathcal{L}_{\beta}$ then $x \triangleleft y$ iff $x = \pi_{\alpha}^{\beta}(y)$. (T, \triangleleft) is then an \aleph_1 -tree.

Natural examples of non-metric results include the Aronszajn compacta of K. Kunen and J. Hart.

Definition

An embedded Aronszajn compactum is a closed subspace $X \subseteq [0,1]^{\omega_1}$ with $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ such that for some club $C \subseteq \omega_1$: for each $\alpha \in C, \mathcal{L}_\alpha := \{x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1\}$ is countable.

For each such X, define $T = T(X) := \bigcup \{L_{\alpha} : \alpha \in C\}$, and let \triangleleft denote the following order: if $\alpha, \beta \in C, \alpha < \beta, x \in \mathcal{L}_{\alpha}$ and $y \in \mathcal{L}_{\beta}$ then $x \triangleleft y$ iff $x = \pi_{\alpha}^{\beta}(y)$. (T, \triangleleft) is then an \aleph_1 -tree.

Definition

An Aronszajn compactum is a compact space X such that $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ and for some $Z \subset [0,1]^{\omega_1}$ homeomorphic to X, Z is an embedded Aronszajn compactum.

Natural examples of non-metric results include the Aronszajn compacta of K. Kunen and J. Hart.

Definition

An embedded Aronszajn compactum is a closed subspace $X \subseteq [0,1]^{\omega_1}$ with $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ such that for some club $C \subseteq \omega_1$: for each $\alpha \in C, \mathcal{L}_\alpha := \{x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1\}$ is countable.

For each such X, define $T = T(X) := \bigcup \{L_{\alpha} : \alpha \in C\}$, and let \triangleleft denote the following order: if $\alpha, \beta \in C, \alpha < \beta, x \in \mathcal{L}_{\alpha}$ and $y \in \mathcal{L}_{\beta}$ then $x \triangleleft y$ iff $x = \pi_{\alpha}^{\beta}(y)$. (T, \triangleleft) is then an \aleph_1 -tree.

Definition

An Aronszajn compactum is a compact space X such that $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ and for some $Z \subset [0,1]^{\omega_1}$ homeomorphic to X, Z is an embedded Aronszajn compactum.

Kunen, Hart

Assume \Diamond . For each of the following 2x3 = 6 possibilities, there is an HS, HL, Aronszajn compactum X with tree T = T(X). Possibilities for T:

- a. T is Suslin.
- b. T is special.

Possibilities for X:

 $\alpha. \ dim(X) = 0.$

- β . dim(X) = 1 and X is connected and locally connected.
- γ . $dim(X) = \infty$ and X is connected and locally connected.

Daniel et al.

There is a hereditarily indecomposable Aronszajn compactum X such that each subcontinuum of X is a G_{δ} .

Daniel et al.

There is a hereditarily indecomposable Aronszajn compactum X such that each subcontinuum of X is a G_{δ} .

Typical examples in the literature include building infinite-dimensional spaces using the Hilbert cube and spectral constructions (van Mill). Others involve the Menger Sponge to construct 1-dimensional spaces (Kunen).

Daniel et al. There is a hereditarily indecomposable Aronszajn compactum X such that each subcontinuum of X is a G_{δ} .

Typical examples in the literature include building infinite-dimensional spaces using the Hilbert cube and spectral constructions (van Mill). Others involve the Menger Sponge to construct 1-dimensional spaces (Kunen).

We use the pseudo-arc as a model space and build several hereditarily indecomposable continua.

Daniel et al. There is a hereditarily indecomposable Aronszajn compactum X such that each subcontinuum of X is a G_{δ} .

Typical examples in the literature include building infinite-dimensional spaces using the Hilbert cube and spectral constructions (van Mill). Others involve the Menger Sponge to construct 1-dimensional spaces (Kunen).

We use the pseudo-arc as a model space and build several hereditarily indecomposable continua.

Proposition

Assume \Diamond . There is a hereditarily indecomposable Aronszajn continuum X such that X is HL.

Proposition

There is a hereditarily indecomposable continuum X such that X is first countable and non-separable.

Proposition

Assume \Diamond . There is a hereditarily indecomposable Aronszajn continuum X such that X is HL.

Proposition

There is a hereditarily indecomposable continuum X such that X is first countable and non-separable.

We don't know yet if there is a an L-space which is hereditarily indecomposable.

Proposition

Assume \Diamond . There is a hereditarily indecomposable Aronszajn continuum X such that X is HL.

Proposition

There is a hereditarily indecomposable continuum X such that X is first countable and non-separable.

We don't know yet if there is a an L-space which is hereditarily indecomposable.

The hyperspace $\mathcal{K}(X)$ (also denoted 2^X) consists of all closed subsets of X equipped with the Vietoris topology. This topology is generated by two kinds of subbasic open sets, where U is an arbitrary open set in X:

$$\langle U \rangle = \{F \in 2^X : F \subseteq U\}$$

and

$$> U <= \{F \in 2^X : F \cap U \neq \emptyset\}.$$

The hyperspace C(X) is the subspace of $\mathcal{K}(X)$ consisting of all subcontinua of X.

The hyperspace $\mathcal{K}(X)$ (also denoted 2^X) consists of all closed subsets of X equipped with the Vietoris topology. This topology is generated by two kinds of subbasic open sets, where U is an arbitrary open set in X:

$$\langle U \rangle = \{F \in 2^X : F \subseteq U\}$$

and

$$> U <= \{F \in 2^X : F \cap U \neq \emptyset\}.$$

The hyperspace C(X) is the subspace of $\mathcal{K}(X)$ consisting of all subcontinua of X.

 $\mathcal{K}(.)$ and $\mathcal{C}(.)$ are endofunctors of the category of topological spaces.

The hyperspace $\mathcal{K}(X)$ (also denoted 2^X) consists of all closed subsets of X equipped with the Vietoris topology. This topology is generated by two kinds of subbasic open sets, where U is an arbitrary open set in X:

$$\langle U \rangle = \{F \in 2^X : F \subseteq U\}$$

and

$$> U <= \{F \in 2^X : F \cap U \neq \emptyset\}.$$

The hyperspace C(X) is the subspace of $\mathcal{K}(X)$ consisting of all subcontinua of X.

 $\mathcal{K}(.)$ and $\mathcal{C}(.)$ are endofunctors of the category of topological spaces.

Applications

Let X be a compactum. $\mathcal{K}(X)$ and $\mathcal{C}(X)$, apart from being topological spaces, are partially ordered sets. We always fix the order \leq_X to be reverse inclusion.

What can the order structure of those hyperspaces tell us about the topology?

What can the order structure of those hyperspaces tell us about the topology?

An immediate result, based on the Wallman representation theorem and a work of Wolk: for a compactum X, the structure of $\mathcal{K}(X)$, considered as a partially ordered set, determines X up to homeomorphism.

What can the order structure of those hyperspaces tell us about the topology?

An immediate result, based on the Wallman representation theorem and a work of Wolk: for a compactum X, the structure of $\mathcal{K}(X)$, considered as a partially ordered set, determines X up to homeomorphism.

What about C(X)?

What can the order structure of those hyperspaces tell us about the topology?

An immediate result, based on the Wallman representation theorem and a work of Wolk: for a compactum X, the structure of $\mathcal{K}(X)$, considered as a partially ordered set, determines X up to homeomorphism.

What about C(X)?

Nikiel

If X and Y are metrizable hereditarily indecomposable continua, then $(C(X), \leq_X)$ and $(C(Y), \leq_Y)$ are isomorphic.

Nikiel

If X and Y are metrizable hereditarily indecomposable continua, then $(C(X), \leq_X)$ and $(C(Y), \leq_Y)$ are isomorphic.

Illanes

Hereditarily indecomposable continua X have unique hyperspaces exp(X) and C(X).

Nikiel

If X and Y are metrizable hereditarily indecomposable continua, then $(C(X), \leq_X)$ and $(C(Y), \leq_Y)$ are isomorphic.

Illanes

Hereditarily indecomposable continua X have unique hyperspaces exp(X) and C(X).

Thus for a compactum X, exp(X) encodes much more information about the topology of X than C(X).

Nikiel

If X and Y are metrizable hereditarily indecomposable continua, then $(C(X), \leq_X)$ and $(C(Y), \leq_Y)$ are isomorphic.

Illanes

Hereditarily indecomposable continua X have unique hyperspaces exp(X) and C(X).

Thus for a compactum X, exp(X) encodes much more information about the topology of X than C(X).